Ir al contenido principal

4.4 Aplicaciones

4.4 APLICACIONES.

Resultado de imagen para curvas e interpolacion 

En el subcampo matemático del análisis numérico, un spline es una curva diferenciable definida en porciones mediante polinomios.
En los problemas de interpolación, se utiliza a menudo la interpolación mediante splines porque da lugar a resultados similares requiriendo solamente el uso de polinomios de bajo grado, evitando así las oscilaciones, indeseables en la mayoría de las aplicaciones, encontradas al interpolar mediante polinomios de grado elevado.
Para el ajuste de curvas, los splines se utilizan para aproximar formas complicadas. La simplicidad de la representación y la facilidad de cómputo de los splines los hacen populares para la representación de curvas en informática, particularmente en el terreno de los gráficos por ordenado.


Interpolación Segmentaria Lineal
Este es el caso más sencillo. En él, vamos a interpolar una función f(x) de la que se nos dan un número N de pares (x,f(x)) por los que tendrá que pasar nuestra función polinómica P(x). Esta serie de funciones nuestras van a ser lineales, esto es, con grado 1: de la forma P(x) = ax + b.
Definiremos una de estas funciones por cada par de puntos adyacentes, hasta un total de (N-1) funciones, haciéndolas pasar obligatoriamente por los puntos que van a determinarlas, es decir, la función P(x) será el conjunto de segmentos que unen nodos consecutivos; es por ello que nuestra función será continua en dichos puntos, pero no derivable en general.
Ejemplo : Interpolar con splines f(x) = 1 / x , en los puntos en los que x vale 1, 2 y 4
f(1) = 1
f(2) = 0.5
f(4) = 0.25
El primer segmento P1(x) = ax + b deberá unir los primeros dos puntos de coordenadas (1,1) y (0.5,2). Surge un sistema lineal de dos ecuaciones en dos incógnitas:
(1) 1=a+b
(2) 0.5=2a+b
De (1) se obtiene:
a=1-b (3)
Reemplazando (3) en (2) se obtiene:
0.5=2(1-b)+b
luego
b=1.5
Reemplazando el valor de (b) en (1), se obtiene:
a = - 0.5
Por lo tanto, se concluye que: P1(x) = - 0.5x + 1.5 El segundo segmento P2(x) = ax + b deberá unir el segundo punto (0.5,2) con el tercer punto (0.25,4). Análogamente a lo hecho para P1(x), en el caso de P2(x) se obtiene:
(1) 0.5 = 2a + b
(2) 0.25 = 4a + b
a = - 0.125, b = 0.75
Luego P2(x) = - 0.125x + 0.75
Interpolación Segmentaria Cuadrática
En este caso, los polinomios P(x) a través de los que construimos el Spline tienen grado 2. Esto quiere decir, que va a tener la forma P(x) = ax² + bx + c
Como en la interpolación segmentaria lineal, vamos a tener N-1 ecuaciones (donde N son los puntos sobre los que se define la función). La interpolación cuadrática nos va a asegurar que la función que nosotros generemos a trozos con los distintos P(x) va a ser continua, ya que para sacar las condiciones que ajusten el polinomio, vamos a determinar como condiciones:
Que las partes de la función a trozos P(x) pasen por ese punto. Es decir, que las dos Pn(x) que rodean al f(x) que queremos aproximar, sean igual a f(x) en cada uno de estos puntos.
Que la derivada en un punto siempre coincida para ambos "lados" de la función definida a trozos que pasa por tal punto común.
Esto sin embargo no es suficiente, y necesitamos una condición más. ¿Por qué?. Tenemos 3 incógnitas por cada P(x). En un caso sencillo con f(x) definida en tres puntos y dos ecuaciones P(x) para aproximarla, vamos a tener seis incógnitas en total. Para resolver esto necesitaríamos seis ecuaciones, pero vamos a tener tan sólo cinco: cuatro que igualan el P(x) con el valor de f(x) en ese punto (dos por cada intervalo), y la quinta al igualar la derivada en el punto común a las dos P(x).
Se necesita una sexta ecuación,¿de dónde se extrae? Esto suele hacerse con el valor de la derivada en algún punto, al que se fuerza uno de los P(x).
Interpolación Segmentaria Cúbica
En este caso, cada polinomio P(x) a través del que construimos los Splines en [m,n] tiene grado 3. Esto quiere decir, que va a tener la forma P(x) = ax³ + bx² + cx + d
En este caso vamos a tener cuatro variables por cada intervalo (a,b,c,d), y una nueva condición para cada punto común a dos intervalos, respecto a la derivada segunda:
Que las partes de la función a trozos P(x) pasen por ese punto. Es decir, que las dos Pn(x) que rodean al f(x) que queremos aproximar, sean igual a f(x) en cada uno de estos puntos.
Que la derivada en un punto siempre coincida para ambos "lados" de la función definida a trozos que pasa por tal punto común.
Que la derivada segunda en un punto siempre coincida para ambos "lados" de la función definida a trozos que pasa por tal punto común.
Como puede deducirse al compararlo con el caso de splines cuadráticos, ahora no nos va a faltar una sino dos ecuaciones (condiciones) para el número de incógnitas que tenemos.
La forma de solucionar esto, determina el carácter de los splines cúbicos. Así, podemos usar:
Splines cúbicos naturales: La forma más típica. La derivada segunda de P se hace 0 para el primer y último punto sobre el que está definido el conjunto de Splines, esto son, los puntos m y n en el intervalo [m,n].
Dar los valores de la derivada segunda de m y n de forma "manual", en el conjunto de splines definidos en el intervalo [m,n].
Hacer iguales los valores de la derivada segunda de m y n en el conjunto de splines definidos en el intervalo [m,n]
Splines cúbicos sujetos: La derivada primera de P debe tener el mismo valor que las derivada primera de la función para el primer y último punto sobre el que está definido el conjunto de Splines, esto son, los puntos m y n en el intervalo [m,n].

Comentarios

Entradas populares de este blog

6.3 Métodos de pasos múltiples

6.3 Métodos de pasos múltiples Los métodos de un paso descritos en las secciones anteriores utilizan información en un solo punto xi para predecir un valor de la variable dependiente yi+1 en un punto futuro xi+1. Procedimientos alternativos, llamados métodos multipaso, se basan en el conocimiento de que una vez empezado el cálculo, se tiene información valiosa de los puntos anteriores y esta a nuestra disposición. La curvatura de las líneas que conectan esos valores previos proporciona información con respecto a la trayectoria de la solución. Los métodos multipaso que exploraremos aprovechan esta información para resolver las EDO. Antes de describir las versiones de orden superior, presentaremos un método simple de segundo orden que sirve para demostrar las características generales de los procedimientos multipaso. Observe la ecuación ec. 2  alcanza ) a expensas de emplear un tamaño de paso mas grande, 2h. Además, ob

6.2 Métodos de un paso: Método de Euler, Método de Euler mejorado y Método de Runge-Kutta

6.2 Métodos de un paso: Método de Euler, Método de Euler mejorado y Método de Runge-Kutta   Método de Euler El método de Euler es un procedimiento de integración numérica para resolver ecuaciones diferenciales ordinarias a partir de un valor inicial dado. El método de Euler es el más simple de los métodos numéricos para resolver un problema del siguiente tipo: Consiste en multiplicar los intervalos que van de x0 a xf en n subintervalos de ancho h; Osea: de manera que se obtiene un conjunto discreto de n+1 puntos: x0, x1, x2, ... , xn del intervalo de interés [x0,xf]. Para cualquiera de estos puntos de cumple que:  0<i<n. La condición inicial y(x0)=y0, representa el punto P0=(x0,y0) por donde pasa la curva solución de la ecuación del plantamiento inicial, la cual se denotará cmo F(x)=y. Ya teniendo el punto P0 se puede evaluar la primera derivada de F(x) en ese punto; por lo tanto: Con esta información se traza una recta, aquella que pasa por

6.1 Fundamentos de Ecuaciones Diferenciales

UNIDAD 6 ECUACIONES DIFERENCIALES ORDINARIAS 6.1 Fundamentos de Ecuaciones Diferenciales Una  ecuación diferencial  es una  ecuación  en la que intervienen  derivadas  de una o más funciones desconocidas. Dependiendo del número de variables independientes respecto de las que se deriva, las ecuaciones diferenciales se dividen en Ecuaciones diferenciales ordinarias : aquellas que contienen derivadas respecto a una sola variable independiente. Ecuaciones en derivadas parciales : aquellas que contienen derivadas respecto a dos o más variables. Una ecuación diferencial es una ecuación que incluye expresiones o términos que involucran a una función matemática incógnita y sus derivadas. Algunos ejemplos de ecuaciones diferenciales son: es una ecuación diferencial ordinaria, donde   representa una función no especificada de la variable independiente  , es decir,  ,   es la derivada de   con respecto a  . La expresión es una ecuación en derivadas pa